AWR Technology Microstep Protocol v1.15

1. <u>Contents</u>	
1. CONTENTS	
2. REVISION HISTORY	
3. SERIAL FORMAT	2
3.1 Hardware 3.2 Protocol	
4. COMMANDS TO MICROSTE1P	
 4.1 BUTTON PRESSES 4.2 SPEED CONTROL 4.3 USER OUTPUTS 4.4 SOFT WRITES 	
5. ACCESS TO MICROSTEP REGISTERS	
 5.1 Addresses 5.2 Read One Word	
6. MESSAGES FROM MICROSTEP	
 6.1 Errors 6.2 Index Pulse 6.3 Override Input 6.4 Axis Movement Status 	
6.4 AXIS MOVEMENT STATUS 6.5 BACKLASH CORRECTIONS	

2. <u>Revision History</u>

Date	Version	Firmware	Details
30 Jan 1998	v1.0	<= v00.03	• Conversion from extant documentation.
12 Feb 1998	v1.1	v00.04	• Some mods to improve consistency.
14 August 1998	v1.7	none yet	• Index Pulse (TBD)
			• Changed nonvol locations to be encapsulated for each possible movement.
9 September	v1.8	none yet	More consistent responses.
1998			• Re-optimised nonvol locations to reduce wasted space, while reflecting real microstep requirements.
24 September 1998	v1.9	none yet	• Reduced nonvol locations to save memory in ustep.
19 April 1999	v1.10	v00.05	• New command to send INDEX pulses to IH.
20 April 1999	v1.10a	v00.05	Added to Serial Format section.
			• Added field automated using AUTHOR and TITLE.
21 September 1999	v1.11	v0.53	Added X EVENT from MICROSTEP
4 October 1999	v1.12	v0.54	Postscaler flags function change
15 October 1999	v1.13		• All messages are now packeted to improve link robustness and allow inter-packet debug information.
			Removed adjust commands
6 February 2002	v1.14	v0.59	• Improvements in slow speed performance
			• Bigger command buffer to reduce error message flow.
			• Added BACKLASH corrections for both axes.
			• Added more EVENTS from Microstep.
22 nd Nov 2005	V1.15	V0.59 on	• Tidied up wording to match the actual transactions.

3. Serial Format

3.1 Hardware

Serial setup for the firmware is 9600,N,8,1 with no handshaking. RS232 is operated at 5V CMOS levels, with a transmit impedance of 220R. When category 5 UTP cable is used, the limit is likely to be potential drop in the ground return, giving a maximum length of about 10m.

3.2 Protocol

The protocol is essentially multi-master since both parties can originate a transaction. This can give rise to synchronism problems, so all messages are packeted within START (:) and STOP (#) bracketing characters, except the one character responses (Y) or (N). All strings have a $\langle CR \rangle \langle LF \rangle$ appended.

Command-Response transactions are atomic, that is they will not be interrupted. However, due to buffering and soft timing considerations, it is expedient to expect the response packet to be received out of order, with perhaps a message in-between. The timeout for responses is 100ms. Packets whose contents are bad or meaningless will be discarded.

HEX digits must be UPPER CASE.

4. Commands to MICROSTEP

Unless otherwise stated, the response text is:

Y for success

N for failure

4.1 <u>Button Presses</u>

Command Text	Event	Details
1	UP_PRESS	Presses and holds the UP key.
2	DN_PRESS	Presses and holds the DOWN key.
3	LT_PRESS	Presses and holds the LEFT key.
4	RT_PRESS	Presses and holds the RIGHT key.
5	RA_IDLE	Releases the RIGHT and LEFT keys.
6	DEC_IDLE	Releases the UP and DOWN keys.

4.2 Speed Control

Command Text	Event	Details
7	SPEED_30	Sets movement rate to GUIDE
		(typically 30%).
8	SPEED_2x	Sets movement rate to CENTRE
		(typically 2x).
9	SPEED_SLEW	Sets movement rate to SLEW
		(as fast as possible).
A	SPEED_32x	Sets movement rate to MOVE
		(typically 32x).

4.3 User Outputs

These are THREE relays for custom switching tasks.

Command Text	Details
Fn1	Activates user relay n.
Fn0	De-activates user relay n. (Relay coil is OFF)

4.4 Soft Writes

These commands exist for committing and discarding soft-writes (see later section).

Command Text	Event	Details
D	DISCARD	Discards all soft writes, ie refreshes RAM from nonvol.
E	COMMIT	Commits all soft writes to nonvol.

5. Access to MICROSTEP Registers

Registers in the MICROSTEP contain all speed settings, and are non-volatile.

5.1 Addresses

Flags structure :

Flags Field	Name	Note
BITO	USM_ENABLE	axis enable
BIT1	USM_POSDIR	positive direction
BIT15BIT8		counts postscaler

Address (hex)	Name	Notes
00.0	dir_sw_override	Override hardware direction senses
00.1	sw_ra_sense	RA software override detection
00.2	sw_dec_sense	DEC software override detection
01-02	drive_ra	Counts, Flags
03-04	drive_dec	Counts, Flags
05-06	guide_up	Counts, Flags
07-08	guide_right	Counts, Flags
09-0A	guide_left	Counts, Flags
0B-0C	centre_up	Counts, Flags
0D-0E	centre_right	Counts, Flags
0F-10	centre_left	Counts, Flags
11	move_up	Frequency
12	move_right	Frequency
13	move_left	Frequency
14	slew_up	Frequency
15	slew_right	Frequency
16	max_accel_ra	Acceleration
17	max_accel_dec	Acceleration
18		Reserved
19	ra_backlash	RA backlash steps
1A	dec_backlash	DEC backlash steps
3F	CRC	Use with care !
FF	VERSION (DD.DD)	Version (read only)

5.2 Read One Word

The command text for reading is

AA?

The response text for success is

AA?DDDD

The response text for failure is

Ν

Where

 $\mathbf{AA} = \text{Address in hex}$

DDDD = Data in hex

5.3 Read All Words

The command for reading all words is

?? (for example : **??#**)

The response is the same as if commands for all the addresses had been issued individually and sequentially.

5.4 Write One Word

The command text for writing is

AADDDD

The response text for success is

AAY

The response for failure is

AAN

Where

 $\mathbf{AA} = \text{Address in hex}$

DDDD = Data in hex

5.5 Soft Writes

A soft-write is a write to RAM only. The protocol is the same as nonvol write except the address has BIT7 set.

6. Messages from MICROSTEP (EVENTS)

None of these have responses.

These can however happen at any time but are not mixed up with other message/response transactions.

6.1 Errors

Error reporting occurs whenever an error is found. After the error is reported the system carries on - no errors are considered fatal.

Error Text	Cause
e1	watchdog timeout reset
e2	EEPROM CRC error
e3	event buffer overflow
e4	EEPROM verify error
e5	EEPROM other error
e6	MCLR reset
е7	brownout reset
e8	divide by zero
e9	divide overflow
eA	receive buffer overflow
еВ	serial receive error
eC	protocol syntax error

6.2 Index Pulse

With INDEX PULSE hardware around the slow motion axis (RA) there is a command to send the index pulse data to the IH. This is necessary to synchronise periodic error correction.

Event Text	Event	Details
Р	INDEX_PULSE	RA index pulse received.

6.3 Override Input

There is also an OVERRIDE input to stop the telescope from moving. This would be operated by an external limit switch (or several wired in series) so if one breaks the circuit the signal will be recognised. An override push button external to the drive box must be pressed to allow further movement of the telescope.

Event Text	Event	Details
S1	FULL_STOP	Override stop received
S 0	GO_FROM_ES	Override stop removed

6.4 Axis Movement Status

This command gets sent whenever an axis starts moving from idle rate or returns to idle rate. Its use is to tell when a slew has finished.

Event Text	Event	Details
Xab	MOVE_STATUS	a = ra axis, b = dec axis
		0 = idle, 1 = moving

6.5 Backlash Corrections

These commands get sent when a backlash correction is initiated and when it finishes. In use the RA axis will send a backlash command when the motor moves more than 2x sidereal in the Easterly direction and again when it reverses direction to normal tracking rate. The DEC axis backlash issues a command at the start of a movement if the movement is in a different direction to previous. The backlash correction is performed as a high speed blip and so takes very little time.

Event Text	Event	Details
V1	RA_BACKLASH	RA motor reversed
V0	RA_IDLE	RA normal direction
W1	DEC_BACKLASH	DEC motor direction towards Pole
WO	DEC_BACKLASH	DEC motor direction away from Pole

If the value in stores 19 and 1A is set to zero (0000) then there is no backlash performed. The value is the number of steps calculated to give the arc second backlash requirement.