AWR Logo SPECIALS DESIGNS

All the requests we receive for equipment are potentially one-off specials. We will discuss with you your requirements with your proposed set up and basic methods to achieve this. The majority of requests can be fulfilled with our standard product range. Each one of course is adjusted to provide the right frequencies and range of options to suit your order.

However, some requirements will need a special design. These will be discussed in further detail to reach a specification which will be quoted for. Hopefully this will be within your budget or alterations to the specification may take place to bring it within your budget. There are some examples below and further ones described (link).

Other examples of our work, methods and capabilities can be found on our Consultancy pages of this web site, Buckman Hardy Associates. We all operate out of the same building, AWR being the name for our direct sales of astronomy products.


DOME AUTOMATION
A page describing what we can do in this area. Having supplied motors and designed electronics to the National Physical Laboratory in the UK we are in a position to speak from experience. Goto our page on AUTOMATING A DOME.
See below for the entry on the NPL dome and shutter.
HIGH POWER MICROSTEP SYSTEM FOR SHEFFIELD UNIVERSITY 24" (April 99)
We have fitted a rack mounted Microstep Drive system to drive two size 34 Stepper Motors already fitted to the Sheffield University 24 inch Cassegrain reflector. This involved customising the Microstep software to provide two frequency generators (rather than driving in Microsteps) for the two axes. We managed to achieve 8500 steps per second max drive rates. Further customising involved controlling clutches to select a high speed slew. The Intelligent Handset is being fitted soon. This telescope is a monster, constructed by the Royal Observatory, Edinburgh. They have a large website describing the observatory, its history and performance, it is worth looking at.
HIGH SPEED DRIVE BOX FOR LARGE CUSTOM TELESCOPE (April 96)
Special high speed requirement using our STEP3 motors up to 2200 steps per second in slew. A constant current Chopper Drive Board was bought in to satisfy this requirement. This technique retains high torque from the motor across the speed range. The accelerating slew provided by our SYSTEM 5 handset was used as the hand controller.

Whilst the chopper drive board was in our building we tried it on some of our motors. We reached 9000 steps per second (unloaded) on our STEP5 motor. This was demonstrated at some exhibitions we attended.


VERY HIGH POWER DUAL SYNCHRONOUS MOTOR SYSTEM (Aug 96)
INSTALLED AT THE NORMAN LOCKYER OBSERVATORY ON THE MACLEAN TELESCOPE
A synchronous motor drive system with the following power ratings: RA Slo-Syn motor 120V 40 Watts, DEC 24V 20 Watts. Each axis has a +/- 20% variability in common with other synchronous motor designs. On test the design was capable of suppplying 80 watts of power to the RA motor. This is quartz crystal locked for Sidereal rate with VFO option fitted and relays to supply the two phases of the declination motor. The handset is based on the SYSTEM 5 product.

The drive box converts the TTL frequencies for the two axes to a power output. An 8th order digital filter provided a SINE wave of reasonable purity which was then fed into an amplifier driving a transformer. Balancing the output was quite tricky to avoid a steady DC current flowing which reduces the effectiveness of the transformer and dissipates extra heat in the drive transistors.

The DEC was based around our standard inverter which is a pseudo square wave drive, although no transformer was used. The supply rail of 24V DC was switched one way round then off for 1/8 cycle then switched the other way round then finally off for 1/8 cycle. The end result with some capacitive smoothing is a basic sine wave but with a high harmonic content.


AUTOMATED DOME FOR NATIONAL PHYSICS LABORATORY (February 95)
In conjunction with Beacon Hill telescopes we provided electronics and motors to open a shutter on a 2 metre dome and rotate a platform on which some scientific equipment now rests. The assembly is operated from the room below. The position of the platform is indicated on a panel.

Completely remote operation was achieved. Sensors were used around the periphery of a Beacon Hill 14 inch worm wheel and the platform was moved one segment at a time. The equipment on the platform automatically acquired its target and tracked it for the duration of that segment. When the platform reached the last sensor a fast rewind was provided using accelerating slews.